Matrix Management: Benefits and Pitfalls

Matrix management brings together managers and employees from different departments to collaborate with each other towards the accomplishment of the organizational goals. As much as it is beneficial, matrix management also has limitations. Hence, companies should understand its benefits and pitfalls before implementing this management technique.

Benefits

The following are some of the advantages of matrix management:

Effective Communication of Information

Because of the hybrid nature of the matrix structure, it enables different departments to closely work together and communicate frequently in order to solve project issues. This leads to a proficient information exchange among leaders and subordinates. Consequently, it results to developed strategies, enhanced performance and quick productivity.

Efficient Use of Resources

Resources can be used efficiently in the organisation since it can be shared among functions and projects. As the communication line is more open, the valuable knowledge and highly skilled resources are easily distributed within the organisation.

Increased Motivation

The matrix structure promotes democracy. And with the employees working on a team, they are motivated to perform their duties better. The opinions and expertise of the employees are brought to the table and considered by the managers before they make decisions. This leads to employee satisfaction, empowerment and improved performance.

Flexibility

Since the employees communicate with each other more frequently, decision making becomes speedy and response is adaptive. They can easily adjust with diverse situations that the company encounters.

Skills Development

Matrix employees are pooled out for work assignments, even to projects that are not necessarily in line with their skill background. With this approach to management, employees have the chance to widen their skills and expertise.

Discipline Retention

One significant advantage of matrix management is that it enables the employees to maintain their skills in functional areas while working with multidisciplinary projects. Once the project is completed and the team wraps up, the members remain sharp in their discipline technically and return to their home functions.

Pitfalls

Here are some disadvantages of matrix management:

Power Struggle

In the matrix structure, there is always tension between the functional and project manager. Although their intent is polite, their conflicting demands and competition for control over the same resources make it more difficult.

Internal Complexity

Having more than one manager, the employees might become confused to who their immediate leader is. The dual authority can lead to internal complexity and possible communication problems. Worst, employee dissatisfaction and high employee turnover.

Heightened Conflict

In any given situation where people and resources are shared across projects, there would always be competition and conflict. When these issues are prolonged, conflicts will heightened and will lead to more internal problems.

Increased Stress

For the employees, being part of a matrix structure can be stressful. Their commitment is divided among the projects and their relationship with multiple managers requires various adjustments. Increased stress can negatively affect their performance in the long run.

Excessive Overhead Expenses

Overhead administrative costs, such as salaries, increase in a matrix structure. More expenses, more burden to the organisation. This is a challenge to matrix management that leaders should consider carefully.

These are just some of the advantages and disadvantages of matrix management. The list could go on, depending on the unique circumstances that organisations have. The key is that when you decide to implement matrix management, you should recognise how to take full advantage of its benefits and understand how to lessen, if not eradicate, the pitfalls of this approach to management.

Check our similar posts

Benefits of Integrating IoT and Field Service

Owing to the complexity of its definition, many people loosely use the phrase Internet of Things (IoT) without having a solid grasp of its true meaning. A majority in this category take IoT to be nothing more than the automation of home gadgets, where the internet is used to interconnect computing components embedded in everyday devices.

Granted, the whole idea of IoT got its roots from the home setting. Nevertheless, IoT has outgrown that spectrum and has since penetrated into almost every area of business and industry. By employing IoT, you can literally take full control of everything in your business using a single device. From assigning tasks to monitoring security, managing bills to tracking time, IoT has revolutionized the way business is done.

Interestingly, not so long ago, most technology experts limited their forecasts to machine-to-machine (M2M) integration and Augmented Reality (AR), which also, admittedly, hit the technology industry with an admirable suave. Back then, it could have been laughable for anyone to have suggested that IoT would be so commanding in almost every industry, including real estate, medicine, automobile, and more.

It’s not for nothing, therefore, that the field service industry has also embraced IoT, integrating it in the daily running of business activities, including tracking machine diagnostics, detecting breakdowns, and assigning field engineers to attend to customer needs.

How the Field Service Industry is Benefiting from IoT

Machine uptime has remained an ongoing concern for many customers. In the traditional approach, whenever a machine breaks down, the customer alerts the service provider and then the field service manager checks to see if there is any field engineer available for a new task. Once an engineer has been identified, he?s then dispatched to the site. This worked, but it resulted in an extended machine downtime, a terrible experience for customers.

Thanks to IoT, things are now happening differently.

IoT is now integrating machines to a central communications centre, where all alerts and status updates are sent. The notifications are instant. The field service manager, therefore, gets to learn of the status of machines at the exact time of status change. An engineer who?s not engaged would then be immediately assigned to undertake any needed servicing or repair.

By employing IoT, the service provider receives timely reports relating to diagnostics, machine uptime, part failures, and more. The field manager can, as a result, foretell and forestall any possible downtime.

How has this been helpful?

Before giving a definite answer to that question, it’s crucial to note that more than half of all field service organizations now employ IoT in their Asset Management Systems and Field Service Management. And to answer the question, all the organizations that have the two systems integrated using IoT experience twice as much efficiency as those that don’t, states an Aberdeen Group report. As you already know, improved efficiency results in a corresponding upshot in customer satisfaction.

Apps Making a Difference in IoT-Field Service

The integration of IoT into almost every aspect of business prompted the design and development of different applications to link computing devices. Since the advent of IoT, the software development for the technology has come of age. Powerful and lightweight apps that don simple yet beautiful user interfaces are now readily available at affordable price tags.

A good example of such an App is ecoVaro by Denizon.

ecoVaro not only helps businesses to monitor energy and other relevant environmental data such as Electricity, Gas, Water, Oil, Carbon, Temperature, Humidity, Solar Power, and more, but also provides analytics and comprehensive yet easy to understand reports. The data received from devices such as meters is converted into useful information that’s then presented in figures and graphs, thus allowing you to make decisions based on laid down controls.

The focus of the app is to instantly alert service engineers to go on site to fix issues.

With ecoVaro, field service engineers no longer have to return to the office to get new instructions. Also, customers don’t have to manually fire alerts to the service provider whenever something isn’t working correctly. By employing the latest in IoT, ecoVaro sends notifications to field service managers and engineers about respective customers that need support.

How ecoVaro Helps

Best-in-class companies aren’t ready to compromise on customer satisfaction. Therefore, every available avenue is used to address customer concerns with the deserved agility. By using IoT, ecoVaro makes it possible for field service providers to foresee and foreclose any possible breakdowns.

The inter-connectivity among the devices and the central communications centre results in increased revenue and improved interactivity between the system and the field engineers. This results in greater efficiency and lower downtime, which translates into improved productivity, accountability, and customer satisfaction, as well as creating a platform for a possible expansion of your customer base.

ecoVaro isn’t just about failed machines and fixes. It also provides diagnostics about connected systems and devices. With this, the diagnostics centre receives system reports in a timely manner, allowing for ease of planning and despatch of field officers where necessary.

Clearly, but using the right application, IoT can transform your business into an excellently performing field service company.

How DevOps Could Change Your Business

Henry Ford turned the U.S. auto industry on its head when he introduced the idea of prefabricating components at remote sites, and then putting them together on a production line. Despite many industries following suit, software lagged behind until 2008, when Andrew Clay Shafer and Patrick Debois told the Agile Conference there was a better way to develop code:
– Write the Code
– Test the Code
– Use the Code
– Evaluate, Schedule for Next Review

The term ?DevOps? is short for Development and Operations. It first appeared in Belgium, where developers refined Shafer and Depois? ideas. Since then, DevOps became a counter movement against the belief that software development is a linear process and has largely overwhelmed it.

DevOps – A Better Way

DevOps emerged at an exciting time in the IT industry, with new technology benefiting from a faster internet. However, the 2008 world recession was also beginning to bite. Developers scampered to lower their human resource costs and get to market sooner.

The DevOps method enabled them to colloborate across organizational boundaries and work together to write, quality assure and performance test each piece of code produced in parallel.
DevOps? greater time-efficiency got them to market sooner and helped them steal a march on the competition.

There are many advantages to DevOps when we work in this collaborative way. Cooperation improves relationships between developers, quality assurers and end users. This helps ensure a better understanding of the other drivers and a more time-effective product.

Summary of DevOps Objectives

DevOps spans the entire delivery pipeline, and increases the frequency with which progress is reviewed, and updates are deployed. The benefits of this include:

? Faster time to market and implementation

? Lower failure rate of new releases

? Shortened lead time for bug fixes and updates

The Psycho-Social Implications of DevOps

DevOps drills through organization borders and traditional work roles. Participants must welcome change and take on board new skills. Its interdepartmental approach requires closer collaboration across structural boundaries and greater focus on overarching business goals.

Outsourcing the detail to freelancers on the Internet adds a further layer of opportunity. Cultures and time zones vary, requiring advanced project management skills. Although cloud-based project management software provides adequate tools, it needs an astute mind to build teams that are never going to meet.

The DevOps movement is thus primarily a culture changer, where parties to a project accept the good intentions of their collaborators, while perhaps tactfully proposing alternatives. There is more to accepting a culture than using a new tool. We have to blend different ways of thinking together. We conclude by discussing three different methods to achieve this.

Three Ways to Deploy DevOps in your?Organisation

If you foresee regular DevOps-based projects, consider running your entire organisation through an awareness program to redirect thinking. This will help non-participants understand why DevOps members may be ?off limits? when they are occupied with project work. Outsourcing tasks to contracting freelancers can mitigate this effect.

There are three implementation models associated with DevOps although these are not mutually exclusive.

? Use systems thinking. Adopt DevOps as company culture and apply it to every change regardless of whether the process is digital, or not

? Drive the process via increased understanding and feedback from key receivers. Allow this to auto-generate participative DevOps projects

? Adopt a continuous improvement culture. DevOps is not only for mega upgrades. Feedback between role players is paramount for success everywhere we go.

You can use the DevOps concept everywhere you go and whenever you need a bridge to better understanding of new ideas. We diminish DevOps when we restrict its usefulness to the vital role it plays in software development. The philosophy behind it belongs in every business.

Energy efficiency- succeed and benefit

Energy is neither created nor destroyed; it is only transformed. This being the law of conservation of energy, and given that the process of transforming energy is inefficient resulting in loss of usable energy in the process of transforming one form of energy into another form, Energy Efficiency finds a home.
Talking of Energy efficiency, think of how much useful energy can be obtained from a system or a particular technology. It is also about the use of technology that requires a lesser amount of energy to carry out the same task.

Energy efficiency is the responsibility of both demand side and supply side. Supply-side energy efficiency refers to a set of actions taken to ensure efficiency through the electricity supply chain. Supply side efficiency measures are about efficiency in electricity generation; be it operation and maintenance of existing equipment or upgrading existing equipment with state-of-the-art energy-efficient generating equipment.

The demand side energy efficiency on the other hand refers to the actions taken to use less/demand less energy. Think of less energy usage in relation to improvement of energy efficiency in buildings, solar water heaters, energy efficient lighting systems such as Compact Fluorescent Lamps, conducting energy audits to identify potential energy saving opportunities, efficient water heating systems and the list is endless.

Success of energy efficiency is a win ? win to YOU-ME-US – the energy consumers, to THEM the energy producers and suppliers and to our precious ENVIRONMENT.
Gain to energy suppliers: – Less energy usage and better energy usage patterns among consumers consequently reduces the customer load which reduces losses on the supply side. Less energy loss creates capacity on the system to serve more customers.

Gain to you-me-us: – Less energy usage and better energy usage patterns Benefits the customer through reduced Electricity bills / $ savings through lower bills.

Benefits to the environment: – Usage of less energy reduces use of fossil fuels, hence reduction in GHG emissions hence conserving our environment. Companies look at means to make rational use of their least efficient generating equipment. The objective is to improve the operation and maintenance of existing equipment or upgrade it with state-of-the-art energy-efficient technologies. Some companies have on-site electricity generation alternatives and thus tend to consider the supply side in addition to demand-side energy efficiency.

Ready to work with Denizon?