Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

Saving Energy Step 1 ? Implementing a Management System

There has been much hype down the years regarding whether management is art or science. Thankfully, where people are concerned the pendulum has swung away from standard times in sweatshops in the west. However, when it comes to measuring physical things like harvest per square meter and the amount of energy consumed there is no substitute for scientific measurement, and this implies a system.

Managing energy cost and consumption down is like any other strategy. American engineer / statistician / management consultant W. Edwards Demming may have passed on in 1993. However he was as right as ever when he said:

  1. When people and organizations focus primarily on quality, this tends to increase and costs fall over time.
  1. However, when people and organizations focus primarily on costs, costs tend to rise and quality declines over time.

Demming believed that 90% of organizational problems arise from systems we put in place ourselves. This can be because we are so accustomed to them that we fail to notice when they are no longer relevant. The currently prevailing laissez faire towards energy is a case in point. What is managed improves and what is not, deteriorates. We know this. Let us take a look at how to apply this principle to energy management.

First, you need to get the subject out the closet and talk about it. How often do you do this is your boardroom, and how does energy rank against other priorities? Good governance is about taking up a position and following through on it. Here is a handy checklist you may like to use.

  • Do we use a consistent language when we talk about energy? Is it electricity, or carbon emitted (or are we merely fretting over cost).
  • How well engaged are we as a company? Looking up and down and across the organization are there points where responsibility stops.
  • How well have we defined accountability? Do we agree on key performance areas and how to report on them.
  • Are we measuring energy use at each point of the business? When did we last challenge the assumption that ?we’re doing okay?.
  • Have we articulated our belief that quality is endless improvement, or are we simply chasing targets because someone says we should.

A management system is a program of policies, processes and methods to ensure achievement of goals. The next blog focuses on tools and techniques that support this effort.

FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How DevOps Could Change Your Business

Henry Ford turned the U.S. auto industry on its head when he introduced the idea of prefabricating components at remote sites, and then putting them together on a production line. Despite many industries following suit, software lagged behind until 2008, when Andrew Clay Shafer and Patrick Debois told the Agile Conference there was a better way to develop code:
– Write the Code
– Test the Code
– Use the Code
– Evaluate, Schedule for Next Review

The term ?DevOps? is short for Development and Operations. It first appeared in Belgium, where developers refined Shafer and Depois? ideas. Since then, DevOps became a counter movement against the belief that software development is a linear process and has largely overwhelmed it.

DevOps – A Better Way

DevOps emerged at an exciting time in the IT industry, with new technology benefiting from a faster internet. However, the 2008 world recession was also beginning to bite. Developers scampered to lower their human resource costs and get to market sooner.

The DevOps method enabled them to colloborate across organizational boundaries and work together to write, quality assure and performance test each piece of code produced in parallel.
DevOps? greater time-efficiency got them to market sooner and helped them steal a march on the competition.

There are many advantages to DevOps when we work in this collaborative way. Cooperation improves relationships between developers, quality assurers and end users. This helps ensure a better understanding of the other drivers and a more time-effective product.

Summary of DevOps Objectives

DevOps spans the entire delivery pipeline, and increases the frequency with which progress is reviewed, and updates are deployed. The benefits of this include:

? Faster time to market and implementation

? Lower failure rate of new releases

? Shortened lead time for bug fixes and updates

The Psycho-Social Implications of DevOps

DevOps drills through organization borders and traditional work roles. Participants must welcome change and take on board new skills. Its interdepartmental approach requires closer collaboration across structural boundaries and greater focus on overarching business goals.

Outsourcing the detail to freelancers on the Internet adds a further layer of opportunity. Cultures and time zones vary, requiring advanced project management skills. Although cloud-based project management software provides adequate tools, it needs an astute mind to build teams that are never going to meet.

The DevOps movement is thus primarily a culture changer, where parties to a project accept the good intentions of their collaborators, while perhaps tactfully proposing alternatives. There is more to accepting a culture than using a new tool. We have to blend different ways of thinking together. We conclude by discussing three different methods to achieve this.

Three Ways to Deploy DevOps in your?Organisation

If you foresee regular DevOps-based projects, consider running your entire organisation through an awareness program to redirect thinking. This will help non-participants understand why DevOps members may be ?off limits? when they are occupied with project work. Outsourcing tasks to contracting freelancers can mitigate this effect.

There are three implementation models associated with DevOps although these are not mutually exclusive.

? Use systems thinking. Adopt DevOps as company culture and apply it to every change regardless of whether the process is digital, or not

? Drive the process via increased understanding and feedback from key receivers. Allow this to auto-generate participative DevOps projects

? Adopt a continuous improvement culture. DevOps is not only for mega upgrades. Feedback between role players is paramount for success everywhere we go.

You can use the DevOps concept everywhere you go and whenever you need a bridge to better understanding of new ideas. We diminish DevOps when we restrict its usefulness to the vital role it plays in software development. The philosophy behind it belongs in every business.

Ready to work with Denizon?