Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

How AI Helps Improve Field Service

Its seems that with the current rate of technological innovation that these is something new every single day.  Therefore, you’re always looking forward to a new technological innovation that’s going to help you make your business operations more efficient and automated.

One of the most fascinating milestones in the field of technology is the integration of Artificial Intelligence (AI) in business. In one way or the other, AI gives a glimpse of machine supremacy that allows computers to perform tasks that were initially performed by humans. 

Are machines going to completely replace people in the workplace?

Of course, not.  Technologies like AI and Machine Learning are designed and meant to support employees in doing their tasks too boost their productivity.

AI is predominantly used to eliminate jobs and tasks that humans find boring, demotivating or monotonous. In some cases AI is also used to do jobs that are considered dangerous for humans to preform.

Previously the most common implementations for AI were all about gaming, entertainment, and advanced science,  now it’s spreading into a number of industries including the field service industry.

FieldElite – Field Service Software , can help you optimise the day-to-day operations of your business.

AI in field service management will enhance you business capabilities with:

  • Information Sharing
  • Real Time Updates
  • Automated Workflows
  • Digital Form Data Collection
  • Data Analysis

Improved Customer Service

For Service Based companies, customer retention is vital. Primarily because It can be 5-25 times more costly to acquire a new customer than it is to retain an existing ones.

Therefore customer retention should be a primary focus.? The good news is that by making use of AI you can implement services It can be 5-25 times more costly to acquire a new customer than it is to retain an existing one.

Staying on top of and ensuring you satisfactorily address and meet you customer demands and expectations can be a daunting task.? It can also be an expensive one,? especially for small field service based businesses like :

  • Heating & Plumbing Engineers
  • Electrical Contractors
  • Fire Safety Inspectors
  • HVAC Engineers
  • Facility Management
  • Building, Construction & Trade

Implementing Artificial Intelligence and Machine Learning to automate mundane and repetitive customer administration tasks will enable your staff to be free to provide additional value added tasks for your customers. Making your customers happier.

?Think about the active Chatbots. You can always get complaints directly from customers and address them right away.??

If at any point the customer is unhappy with your services, they can always raise the issue via the Chatbots. Since the bots contain necessary customer information, you can always get back to them and fix the issue at hand.?

With AI in field service, you can solve problems before they arise, or what is otherwise known as predictive maintenance,? In that way, you’ll have better customer relations because you’ll be able to address your customer concerns before they even become aware of them.

Improved Productivity

Scheduling tasks and managing the workforce isn’t a walk in the park. It goes beyond assigning tasks to your team members in the field and giving them deadlines to meet. Whether it’s a small firm or a big organisation, it’s quite difficult to organise the workforce.?

However, adopting Artificial Intelligence can iron out the difficulties most field organisations face in scheduling and managing tasks. Some years back, most firms relied on human intelligence to dispatch jobs to the right people based on given conditions. This was quite difficult, especially that it wasn’t always successful. But thanks to AI. With field service apps like FieldElite scheduling tasks and managing workforce is only a few clicks away.?

What’s more? There?s no room for error. Therefore, you’ll always match the right people for the job. Again, your team will always get tasks on time. That means, the job completion rate will go up, and hence the workforce becomes more productive.?

Predictive Maintenance

Usually, most business operations are based on ?solve the problem as it occurs?, which is just OK. However, it’s not always safe to wait until a problem occurs so that you solve it. Prevention is better than cure, and that’s why Artificial Intelligence comes handy in Field Service.

Using FieldElite Workforce Management Software , you don’t have to wait until something breaks.? Utilizing AI in field service enables you to proactively address field service needs and prevent unforeseen failures and interruptions.?

The ability to predict field service needs through field service apps like FieldElite enables you to make more accurate forecasts. In this way, resource planning is made easier, and as such, you’ll have smoothly running workflows. Again, by taking care of unforeseen circumstances in advance, you’re flexible enough to take care of the unexpected. And that means the overall productivity of your business will go up.

Job Management

Most field service jobs involve multiple stages that can take several days to complete. In addition to this, more often than not, you have to coordinate lots of equipment and contractors at the same time. All these can’t be achieved solely by human efforts. For more successful outcomes, it’s important to incorporate Artificial Intelligence in your field service operations.?

FieldElite is the field service solution that can help you manage sophisticated tasks. The app is packed with field service management tools that enable you to assign complicated tasks and keep track of your field techs. For long-cycle jobs, FieldElite app enables you to follow up on the activities going on the field to ensure they’re completed.?

With AI, there?s no room for error even when the jobs become more sophisticated.

Data Analysis

?

Field service industry involves lots of data. Some years back, organisations depended on human intelligence to analyse big data. Well, things still worked out, but as a human is to err, the outcome wasn’t always perfect. However, with Artificial Intelligence data analysis, 100% accuracy in data analysis is achievable. Field service solutions like FieldElite provide sophisticated data analytic tools that enable you to crack massive data and offer accurate solutions.?

FieldElite data analytics capabilities give you an insight into what’s not working and what needs to be improved. In that way, you can always address matters arising and take care of the loopholes.?

It’s time to go paperless with field management software like FieldElite if you?d like to make your business more profitable. Apart from improving the productivity of your workforce, incorporating AI in your business increases profitability. If you’re still doing your usual field rounds with a clipboard, it’s time to simplify your task with FieldElite app.?

Contact Us

Why Predictive Maintenance is More Profitable than Reactive Maintenance

Regular maintenance is needed to keep the equipment in your facility operating normally. All machinery has a design lifespan, and your goal is to extend this as long as possible, while maintaining optimal production levels. How you go about the maintenance matters, from routine checks to repairing the damaged component parts?all before the whole unit needs to be tossed away and a new one purchased and installed. Here, we will break down the different approaches used, and show you why more industries and businesses are turning to proactive maintenance modes as opposed to the traditional reactive approaches for their?field service operations.?

Reactive Maintenance: A wait and see game

Here, you basically wait for a problem to occur, then fix it. It’s also commonly referred to as a “Run-to-Failure” approach, where you operate the machines and systems until they break. Repairs are then carried out, restoring it to operational condition.?

At face value, it appears cost-effective, but the reality on the ground is far much different. Sure, when the equipment is new, you can expect minimal cases of maintenance. During this time, there?ll be money saved. However, as time progresses there?ll be increased wear, making reliance on a reactive maintenance approach a costly endeavour. The breakdowns are more frequent, and inconsistent as well. Unplanned expenses increase operational costs, and there will be lost productivity during the periods in which the affected machinery won’t be in operation.?

While reactive maintenance makes sense when you’re changing a faulty light bulb at home, things are more complicated when it comes to dealing with machinery in industries, or for those managing multiple residential and commercial properties. For the light bulb, it’s easier to replace it, and failure doesn’t have a ripple effect on the rest of the structures in the household. For industries, each time there is equipment failure, you end up with downtime, production can grind to a halt, and there will be increased environmental risks during equipment start-up and shutdown. If spare parts are not readily available, there will be logistical hurdles as you rush the shipping to get the component parts to the facility. Add this to overworked clients in a bit to complete the repair and to make up for lost hours and delayed customer orders.

For field service companies, more time ends up being spent. After all, there?s the need of knowing which parts needed to be attended to, where they are, and when the servicing is required. Even when you have a planned-out schedule, emergency repairs that are required will force you to immediately make changes. These ramps up the cots, affecting your operations and leading to higher bills for your client. These inconveniences have contributed to the increased reliance on?field service management platforms that leverage on data analytics and IoT to reduce the repair costs, optimise maintenance schedules, and?reduce unnecessary downtimes?for the clients.

Waiting for the machinery to break down actually shortens the lifespan of the unit, leading to more replacements being required. Since the machinery is expected to get damaged much sooner, you also need to have a large inventory of spare parts. What’s more, the damages that result will be likely to necessitate more extensive repairs that would have been needed if the machinery had not been run to failure.?

Pros of reactive maintenance

  1. Less staff required.
  2. Less time is spent on preparation.

Cons of reactive maintenance

  1. Increased downtime during machine failure.
  2. More overtime is taken up when conducting repairs.
  3. Increased expenses for purchasing and storing spare parts.?
  4. Frequent equipment replacement, driving up costs.?

This ?If it ain’t broke, don’t fix it? approach leads to hefty repair and replacement bills. A different maintenance strategy is required to minimise costs. Proactive models come into focus. Before we delve into predictive maintenance, let’s look at the preventive approach.?

Preventive Maintenance: Sticking to a timetable

Here, maintenance tasks are carried out on a planned routine?like how you change your vehicle?s engine oil after hitting a specific number of kilometres. These tasks are planned in intervals, based on specific triggers?like a period of time, or when certain thresholds are recorded by the meters. Lubrication, carrying out filter changes, and the like will result in the equipment operating more efficiently for a longer duration of time. While it doesn’t completely stop catastrophic failures from occurring, it does reduce the number of failures that occur. This translates to capital savings.??

The Middle Ground? Merits And Demerits Of Preventive Maintenance

This periodic checking is a step above the reactive maintenance, given that it increases the lifespan of the asset, and makes it more reliable. It also leads to a reduced downtime, thus positively affecting your company?s productivity. Usually, an 80/20 approach is adopted,?drawing from Pareto’s Principle. This means that by spending 80% of time and effort on planned and preventive maintenance, then reactive maintenance for those unexpected failures that pop up will only occur 20% of the time. Sure, it doesn’t always come to an exact 80/20 ratio, but it does help in directing the maintenance efforts of a company, and reducing the expenses that go into it.?

Note that there will need to be a significant investment?especially of time, in order to plan a preventive maintenance strategy, plus the preparation and delegation of tasks. However, the efforts are more cost effective than waiting for your systems and machinery to fail in order to conduct repairs. In fact, according to the US Dept. of Energy, a company can save between 12-18 % when using a preventive maintenance approach compared to reactive maintenance.

While it is better than the purely reactive approach, there are still drawbacks to this process. For instance, asset failure will still be likely to occur, and there will be the aspect of time and resource wastage when performing unneeded maintenance, especially when technicians have to travel to different sites out in the field. There is also the risk of incidental damage to machine components when the unneeded checks and repairs are being carried out, leading to extra costs being incurred.

We can now up the ante with predictive maintenance. Let’s look at what it has to offer:

Predictive Maintenance: See it before it happens

This builds on preventive maintenance, using data analytics to smooth the process, reduce wastage, and make it more cost effective. Here, the maintenance is conducted by relying on trends observed using data collected from the equipment in question, such as through vibration analysis, energy consumption, oil analysis and thermal imaging. This data is then taken through predictive algorithms that show trends and point out when the equipment will need maintenance. You get to see unhealthy trends like excessive vibration of the equipment, decreasing fuel efficiency, lubrication degradation, and their impact on your production capacities. Before the conditions breach the predetermined parameters of the equipment’s normal operating standards, the affected equipment is repaired or the damaged components replaced.??

Basically, maintenance is scheduled before operational or mechanical conditions demand it. Damage to equipment can be prevented by attending to the affected parts after observing a decrease in performance at the onset?instead of waiting for the damage to be extensive?which would have resulted in system failure. Using?data-driven?field service job management software will help you to automate your work and optimise schedules, informing you about possible future failures.

Sensors used record the condition of the equipment in real time. This information is then analysed, showing the current and future operational capabilities of the equipment. System degradation is detected quickly, and steps can be taken to rectify it before further deterioration occurs. This approach optimises operational efficiency. Firstly, it drastically reduces total equipment failure?coming close to eliminating it, extending the lifespan of the machinery and slashing replacement costs. You can have an orderly timetable for your maintenance sessions, and buy the equipment needed for the repairs. Speaking of which, this approach minimises inventory especially with regards to the spare parts, as you will be able to note the specific units needed beforehand and plan for them, instead of casting a wide net and stockpiling spare parts for repairs that may or may not be required. Repair tasks can be more accurately scheduled, minimising time wasted on unneeded maintenance.??

Preventive vs Predictive Maintenance?

How is predictive different from preventive maintenance? For starters, it bases the need for maintenance on the actual condition of the equipment, instead of a predetermined schedule. Take the oil-change on cars for instance. With the preventive model, the oil may be changed after every 5000?7500 km. Here, this change is necessitated because of the runtime. One doesn’t look at the performance capability and actual condition of the oil. It is simply changed because “it is now time to change it“. However, with the predictive maintenance approach, the car owner would ideally analyse the condition of the oil at regular intervals- looking at aspects like its lubrication properties. They would then determine if they can continue using the same oil, and extend the duration required before the next oil change, like by another 3000 kilometres. Perhaps due to the conditions in which the car had been driven, or environmental concerns, the oil may be required to be changed much sooner in order to protect the component parts with fresh new lubricant. In the long run, the car owner will make savings. The US Dept. of Energy report also shows that you get 8-12% more cost savings with the predictive approach compared to relying on preventive maintenance programs. Certainly, it is already far much more effective compared to the reactive model.?

Pros of Predictive Maintenance

  1. Increases the asset lifespan.
  2. Decreases equipment downtime.
  3. Decreases costs on spare parts and labour.
  4. Improves worker safety, which has the welcome benefit of increasing employee morale.
  5. Optimising the operation of the equipment used leads to energy savings.
  6. Increased plant reliability.

Cons of Predictive Maintenance

  1. Initial capital costs included in acquiring and setting up diagnostic equipment.
  2. Investment required in training the employees to effectively use the predictive maintenance technology adopted by the company.

The pros of this approach outweigh the cons.?Independent surveys on industrial average savings?after implementing a predictive maintenance program showed that firms eliminated asset breakdown by 70-75%, boosted production by 20-25%, and reduced maintenance costs by 25-30%. Its ROI was an average of 10 times, making it a worthy investment.

The General Data Protection Regulation & The Duty to use Encryption

The General Data Protection Regulation, abbreviated to GDPR, raised a storm when it arrived. In reality, it merely tightened up on existing good practice according to digital security specialists Gemalto. The right to withhold consent and to be forgotten has always been there, for example. However, the GDPR brings a free enforcement service for consumers, thus avoiding the need for third party, paid assistance.

The GDPR Bottom Lines for Data Security
Moreover, the GDPR has penalties it can apply, of the order that might have a judge choking on his wig. Under it, data security measures such as pseudonymisation (substitution of identifying fields) and encryption (encoding including password protection) have become mandatory. Businesses must further respect their client data by:

a) Storing it in a secure environment supported by robust services and systems

b) Having proven measures to restore availability and access after a breach

c) Being able to prove frequent effectiveness testing of these measures.

The General Data Protection Regulation places an onus on businesses to report any data breaches. This places us in a difficult situation. We must either face at least a wrist slap upon reporting failures. Alternatively, pay a fine of up to ?10 million, or 2% of total worldwide annual turnover.

The Engineered Weak Link in the System
Our greatest threat of breach is probably when the data leaves our secure environment, and travels across cyberspace to an employee, stakeholder, collaborator, or the client themselves. Since email became open to attack, businesses and individuals have turned to sharing platforms like Dropbox, Google Drive, Skydrive, and so on. While these do allow an additional layer of password protection, none of these has proved foolproof. The GDPR may still fine us heavily, whether or not we are to blame for the actual breach.

How Hacking is Approaching Being a Science
We may make a mistake we may regret, if we do not take hacking seriously. The 10 worst data hacks Identity Force lists are proof positive that spending lots of money does not guarantee security (any more than having the biggest stock of nuclear weapons). We have to be smart, and start thinking the way that hackers do.

Hacker heaven is finding an Experian or a Dun & Bradstreet that may have shielded 143 million, and 33 million consumer records respectively, behind a single, flimsy cyber-security door. Ignorance is no excuse for them. They should simply have known better. They should have rendered consumer data unreadable at individual record level. The hackers could have found this too demanding to unpick, and have looked elsewhere.

How Data Encryption Can Help Prevent Hackers Succeeding
Encrypting data is dashboard driven, and businesses need not concern themselves about it works. There are, however, a few basic decisions they must take:

a) Purge the database of all information held without explicit permission

b) Challenge the need for the remaining data and purge the nice-to-haves

c) Adopt a policy of encrypting access at business and customer interfaces

d) Register with three freemium encryption services that seem acceptable

e) After experimenting, sign up for a premium service and be prepared to pay

Factors to Consider When Reaching a Decision
Life Hacker?suggests the following criteria although the list is a one-size-fits-all

a) Is the system fast, simple, and easy to operate

b) Can you encrypt hidden volumes within volumes

c) Can you mass-encrypt a batch of files easily

d) Do all other files remain encrypted when you open one

e) Do files automatically re-encrypt when you close them

f) How confident are you with the vendor, on a scale of 1 to 10

It may be wise to encrypt all the files on your system, and not just your customer data. We are always open to a hack by the competition after our strategic planning. If we leave the decision up to IT, then IT, being human may take the easy way out, and encrypt as little as possible.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?