Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

Succeed at Transformation

Despite the pomp and fanfare associated with launching corporate transformation programs, in reality very few of them succeed. According to a recent report by McKinsey the success rate is pegged below 40%. In addition, the same research indicates that defensive transformations – those undertaken as part of crisis management – have lower chances of success than progressive ones – those launched to streamline operations and foster growth. However, adopting certain strategies, like setting clear and high goals, and maintaining energy and engagement throughout the implementation phase, can really boost the project’s success rate. A key aspect of business transformation is IT transformation. This can be attributed to the fact that significant business change is either driven or influenced by technological change.

So what is IT Transformation?

IT transformation is basically a holistic reorganisation of the existing technological infrastructure that supports the company’s mission critical functions. In essence, IT transformation is not all about effecting change for the sake of change but involves systematic steps that align IT systems to business functions. To appreciate this approach, it is important to explore current trends in the business world where human resource, finance and IT transformations are being carried out in unison. This is being done to develop strong corporate centres that are leaner, agile and more productive that enhance greater synergies across all business functions.

IT transformation inevitably results in major changes of the information system’s technology, involving both hardware and software components of the system, the architecture of the system, the manner in which data is structured or accessed, IT control and command governance, and the components supporting the system. From this scope of works it is evident that IT transformation is a huge project that requires proper planning and implementation in order to succeed.

Tips to Improve Success in IT transformations Projects

1. Focus on Benefits not Functionality

The project plan should be more focused on benefits that can be accrued if the system is implemented successfully rather than system functionality. The benefits should be in line with business goals, for instance cost reduction and value addition. The emphasis should be on the envisaged benefits which are defined and outlined during the project authorisation. The business benefits outlined should be clear, feasible, compelling and quantifiable. Measures should be put in place to ensure that the benefits are clearly linked to the new system functionality.

2. Adopt a Multiple Release Approach

Typically most IT projects are planned with focus on a big launch date set in years to come. This approach is highly favoured because it simplifies stakeholder expectation management and avoids the complexity associated with multiple incremental releases. However, this approach misses the benefit of getting early critical feedback on functioning of the system. In addition, the long lead times often result in changes in project scope and loss of critical team members and stakeholders. IT transformation projects should be planned to deliver discrete portions of functionality in several releases. The benefit of multiple release approach is that it reduces project risks and most importantly allows earlier lessons learnt to be incorporated in future releases.

3. Capacity of the Organisation to confront Change

As pointed out, IT transformations result in significant changes in business operations and functions. Hence it is important that all business stakeholders should be reading from the same script in regards to changes expected. In addition, key stakeholders should be involved in crucial project stages and their feedback incorporated to ensure that the system is not only functional but business focused.

Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

UK Government Updates ESOS Guidelines

Britain?s Environment Agency has produced an update to the ESOS guidelines previously published by the Department of Energy and Climate Change. Fortunately for businesses much of it has remained the same. Hence it is only necessary to highlight the changes here.

  1. Participants in joint ventures without a clear majority must assess themselves individually against criteria for participation, and run their own ESOS programs if they comply.
  2. If a party supplying energy to assets held in trust qualifies for ESOS then these assets must be included in its program.
  3. Total energy consumption applies only to assets held on both the 31 December 2014 and 5 December 2015 peg points. This is relevant to the construction industry where sites may exchange hands between the two dates. The definition of ?held? includes borrowed, leased, rented and used.
  4. Energy consumption while travelling by plane or ship is only relevant if either (or both) start and end-points are in the UK. Foreign travel may be voluntarily included at company discretion. The guidelines are silent regarding double counting when travelling to fellow EU states.
  5. The choice of sites to sample is at the discretion of the company and lead assessor. The findings of these audits must be applied across the board, and ?robust explanations? provided in the evidence pack for selection of specific sites. This is a departure from traditional emphasis on random.

The Environment Agency has provided the following checklist of what to keep in the evidence pack

  1. Contact details of participating and responsible undertakings
  2. Details of directors or equivalents who reviewed the assessment
  3. Written confirmation of this by these persons
  4. Contact details of lead assessor and the register they appear on
  5. Written confirmation by the assessor they signed the ESOS off
  6. Calculation of total energy consumption
  7. List of identified areas of significant consumption
  8. Details of audits and methodologies used
  9. Details of energy saving opportunities identified
  10. Details of methods used to address these opportunities / certificates
  11. Contracts covering aggregation or release of group members
  12. If less than twelve months of data used why this was so
  13. Justification for using this lesser time frame
  14. Reasons for including unverifiable data in assessments
  15. Methodology used for arriving at estimates applied
  16. If applicable, why the lead assessor overlooked a consumption profile

Check out: Ecovaro ? energy data analytics specialist 

Ready to work with Denizon?