ecoVaro to tackle water stress

For many people within the UK, water is not really something to worry about. Surely enough of it falls out the sky throughout the year that it does feel highly unlikely that we?ll ever run out of it. There certainly does seem to be an abundance of Branded Water available in plastic bottles on our supermarket shelves.

Water, water, every where,
And all the boards did shrink;
Water, water, every where,
Nor any drop to drink.

The Rime of the Ancient Mariner ? Samuel Taylor Coleridge

Despite this, Once-unthinkable water crises are becoming commonplace.  If you consider that In England and Wales, we use 16 billion litres of clean drinking water every day ? that’s equivalent to 6,400 Olympic sized swimming pools.

Currently, water companies can provide slightly more than we need ? 2 billion litres are available above and beyond what we’re using.  In some areas, though, such as south east England, there is no surplus and, as such, these regions are more likely to face supply restrictions in a dry year.

If we take little moment to reflect on some of the most notable water related stories over the past few years, we’ll start to get a picture of just how real the potential and the threat of water shortages can be.

Reservoirs in Chennai, India?s sixth-largest city, are nearly dry right now. Last year, residents of Cape Town, South Africa narrowly avoided their own Day Zero water shut-off.

It was only year before that, Rome rationed water to conserve scarce resources.

Climate change is likely to mean higher temperatures which may drive up the demand for water (alongside population growth) and increase evaporation from reservoirs and water courses during spring and summer.

The impact of climate change on total rainfall is uncertain, but the rain that does fall is likely to arrive in heavier bursts in winter and summer. Heavier rain tends to flow off land more quickly into rivers and out to sea, rather than recharging groundwater aquifers.

A greater chance of prolonged dry periods is also conceivable.  This combined with the harsh reality that no human population can sustain itself without sufficient access to fresh water.

If present conditions continue, 2 out of 3 people on Earth will live within a water-stressed zone by 2025

What is water stress?

Water stress is a term used to describe situation when demand for water is greater than the amount of water available at a certain period in time, and also when water is of poor quality and this restricts its usage. Water stress means deterioration in both the quantity of available water and the quality of available water due to factors affecting available water.

Water stress refers to the ability, or lack thereof, to meet human and ecological demand for water. Compared to scarcity, water stress is a more inclusive and broader concept.

Water Stress considers several physical aspects related to water resources, including water scarcity, but also water quality, environmental flows, and the accessibility of water.

Supply and Demand

Major factors involved when water scarcity strikes is when a growing populations demand for water exceeds the areas ability to service that need.

Increased food production and development programs also lead to increased demand for water, which ultimately leads to water stress.

Increased need for agricultural irrigation in order to produce more crops or sustain livestock are major contributors to localised water stress.

Overconsumption

The demand for water in a given population is fairly unpredictable.  Primarily, based on the fact that you can never accurately predict human behaviour and changes in climate.

If too many people are consuming more water than they need because they mistakenly believe that water is freely available and plentiful, then water stress could eventually occur.

This is also linked to perceived economic prosperity of a give region.  Manufacturing demand for water can have huge impact regardless whether water is actively used within the manufacturing process or not.

Water Quality

Water quality in any given area is never static.  Water stress could happen as a result of rising pollution levels having a direct impact on water quality.

Water contamination happens when new industries either knowingly or unknowingly contaminate water with their industrial practices.

Largely, this can happen and frequently does so because these industries do not take effective control of monitoring and managing their impact on communal water supplies.  Incorrectly assuming this is the responsibility of an additional third party like the regional water company.

The truth is, water quality and careful monitoring of it is all of our responsibility.

Water Scarcity

Simple increases in demand for water can in itself contribute to water scarcity. However,  these are often preceded by other factors like poverty or just the natural scarcity of water in the area.

In many instances, the initial locations of towns or cities were not influenced by the close proximity of natural resources like water, but rather in pursuit of the extraction of other resources like Gold, Coal or Diamonds.

For Instance, Johannesburg,  South Africa is the largest City in South Africa and is one of the 50 largest urban areas in the world. It is also located in the mineral rich Witwatersrand range of hills and is the centre of large-scale gold and diamond trade.

Johannesburg is also one of the only major cities of the world that was not built on a river or harbour.   However, it does have streams that contribute to two of Southern Africas mightiest rivers – Limpopo and the Orange rivers.  However, most of the springs from which many of these streams emanate are now covered in concrete!

Water Stress and Agriculture

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of real-time data and utilize cloud-based storage and processing power to curate it.

Sentek?s technology can be found in remote places like Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily repositioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to an end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By accurately monitoring water can be saved until when the plant really needs it.

Peter also emphasises that crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return.

The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us.

Ecovaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

A Quarter of the World?s Population, Face High Water Stress

Data from WRI?s Aqueduct tools reveal that 17 countries ? home to one-quarter of the world?s population?face ?extremely high? levels of baseline water stress, where irrigated agriculture, industries and municipalities withdraw more than 80% of their available supply on average every year. 

Water stress poses serious threats to human lives, livelihoods and business stability. It’s poised to worsen unless countries act: Population growth, socioeconomic development and urbanization are increasing water demands, while climate change can make precipitation and demand more variable.  

How to manage water stress

Water stress is just one dimension of water security. However, like any challenge, its outlook depends on adequate monitoring and management of environmental data.

Even countries with relatively high water stress have effectively secured their water supplies through proper management by leveraging the knowledge they have garnered by learning from the data they gathered.

3 ways to help reduce water stress

In any geography, water stress can be reduced by measures ranging from common sense to innovative technology solutions.

There are countless solutions, but here are three of the most straightforward:

1. Increase agricultural efficiency: The world needs to make every drop of water go further in its food systems. Farmers can use seeds that require less water and improve their irrigation techniques by using precision watering rather than flooding their fields.

Businesses need to increase investments to improve water productivity, while engineers develop technologies that improve efficiency in agriculture.

Consumers can reduce food loss and waste, which uses one-quarter of all agricultural water.

2. Invest in grey and green infrastructure:  D Data produced by Aqueduct Alliance  –  shows that water stress can vary tremendously over the year.  WRI and the World Bank?s research shows that built infrastructure (like pipes and treatment plants) and green infrastructure (like wetlands and healthy watersheds) can work in tandem to tackle issues of both water supply and water quality.

3. Treat, reuse and recycle:  We need to stop thinking of wastewater as waste.

Treating and reusing it creates a ?new? water source.

There are also useful resources in wastewater that can be harvested to help lower water treatment costs. For example, plants in Xiangyang, China and Washington, D.C. reuse or sell the energy- and nutrient-rich byproducts captured during wastewater treatment.

Summary

The data is undeniably clear, there are very worrying trends in water.

Businesses and other other organisations need to start taking action now and investing in better monitoring and management, we can solve water issues for the good of people, economies and the planet. We collectively cannot kick this can down the road any further, or assume that this problem will be solved by others.

It is time, for a collective sense of responsibility and for everyone to invest in future prosperity of our Planet as a collective whole.  Ecological preservation should be at the forefront of all business plans because at the end of the day profit is meaningless without an environment to enjoy it in!

Check our similar posts

How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
A Definitive List of the Business Benefits of Cloud Computing

When you run a Google search for the “benefits of cloud computing”, you’ll come across a number of articles with a good list of those. However, most of them don’t go into the details, which nevertheless might still suit some readers. But if you’re looking for compelling business reasons to move your company’s IT to the cloud, a peripheral understanding of what this technology can do for you certainly won’t cut it.

Now, cloud computing is not just one of those “cool” technologies that come along every couple of years and which can only benefit a particular department.?What we’re talking about here really is a paradigm shift in computing that can transform not only entire IT infrastructures but also how we run our respective organisations.

I hate to think that some people are holding back on cloud adoption just because they haven’t fully grasped what they’re missing. That is why I decided to put together this list. I wanted to produce a list that would help top management gain a deeper understanding of the benefits of the cloud.

Cloud computing is one bandwagon you really can’t afford not to jump into. Here are ten good reasons why:

1.?Zero?CAPEX and low TCO for an enterprise-class IT infrastructure

2. Improves cash flow

3. Strengthens business continuity/disaster recovery capabilities

4. Lowers the cost of analytics

5. Drives business agility

6. Ushers in anytime, anywhere collaboration

7. Enhances information, product, and service delivery

8. Keeps entire organisation in-sync

9. ?Breathes life into innovation in IT

10. Cultivates optimal environments for development and testing

Zero CAPEX and low TCO for an enterprise-class IT infrastructure

Most cloud adopters with whom I’ve talked to cite this particular reason for gaining interest in the cloud.

Of course they had to dig deeper and consider all other factors before ultimately deciding to migrate. But the first time they heard cloud services could give them access to enterprise class IT infrastructures without requiring any upfront capital investment, they realised this was something worth exploring.

A good IT infrastructure can greatly improve both your cost-effectiveness and your capability to compete with larger companies. The more reliable, fast, highly-available, and powerful it is, the better.

But then building such an infrastructure would normally require a huge capital investment for networking equipment, servers, data storage, power supply, cooling, physical space, and others, which could run up to tens or even hundreds of thousands of euros. To acquire an asset this costly, you’d have to take in debt and be burdened by the ensuing amortisation.

If you’ve got volumes of cash stashed in your vault, cost might not be a problem. But then if you really have so much savings, wouldn’t it be more prudent to use it for other sales-generating projects? An extensive marketing endeavour perhaps?

A capital expenditure of this magnitude and nature, which normally has to be approved by shareholders, can be regarded as a high financial risk. What if business doesn’t do well and you wouldn’t need all that computing power? What if the benefits expected from the IT investment are not realised??You cannot easily convert your IT infrastructure into cash.

Remember we’re talking about a depreciating asset. So even assuming you can liquidate it, you still can’t hope to sell it at its buying price. These factors are going to play in the minds of your Board of Directors when they’re asked to decide on this CAPEX.

Incidentally, these issues don’t exist in a cloud-based solution.

A cloud solution typically follows a pay-as-you-go utility pricing model where you get billed monthly (sometimes quarterly) just like your electricity. ?In other words, it’s an expense you’ll need to pay for?at the end of a period over which the service’s value would have already been realised. Compare that with a traditional infrastructure wherein you’ll have to spend upfront but the corresponding value will still have to be delivered gradually in the succeeding months or years.

demand expense traditional infrastructure

From the point of view of your CFO, what could have been a CAPEX to acquire an asset that depreciates with time (and consequently reduces your company’s net worth), becomes a flexible operating expense (OPEX).?Truly, it is an operating expense that you can increase, decrease, or even totally discontinue, depending on what the prevailing business conditions demand.

demand expense cloud infrastructure

People who think they have done the math in comparing cloud-based and traditional IT infrastructures claim that, although they see how cloud solutions transform CAPEX into OPEX, they really don’t see any significant difference in overall costs.

However, these people have only gone as far as adding up the expected monthly expenses of a cloud solution over the estimated duration of an equivalent IT infrastructure’s effective lifespan and comparing the sum with that IT infrastructure’s price tag. You won’t get a clear comparison that way.

You need to consider all factors that contribute to the infrastructure’s Total Cost of Ownership (TCO). Once you factor in the costs of electricity, floor space, storage, and IT administrators, the economical advantages of choosing a cloud solution will be more evident. Add to that the costs of downtime such as: interruptions to business operations, technical support fees, and the need to maintain expensive IT staff who spend most of their time “firefighting”, and you’ll realise just how big the savings of cloud adopters can be.

Still not convinced? Well, we’re still getting started.?On our next post, we’ll take a closer look at the additional benefits of paying under an OPEX model instead of a CAPEX model.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
IT Risk and Control Solutions Specialists – Why you need them more than ever

Over the years, the capabilities of IT systems have certainly grown by leaps and bounds. But so have the risks that accompany them. Countless threats to IT systems now exist that are capable of seriously disrupting business operations. That’s why companies have to conduct assessments aimed at making sure their systems are still capable of functioning effectively, efficiently, and securely all the time.

If you think you’ve been lucky enough to be spared from these threats, then maybe it’s because you haven’t conducted a risk assessment on your IT system recently. All too often, we hear of CIOs who believed their IT system was in tip-top condition, only to be later caught off-guard by a critical system breakdown that would eventually cripple their business for days or weeks.

More information assets to look after

If, before, you only had to worry about regular office applications, workstations, a LAN and a server, today’s varied and more sophisticated information assets are more challenging to maintain.

In addition to network operating systems, database management systems, content management systems, email systems, virtualization platforms, document management systems, business intelligence applications, and accounting software, a typical enterprise may also have to look after firewalls, intrusion detection systems, storage and backup systems, and data loss prevention systems, to mention a few.

These understandably require the services of experts spanning a wide range of skill sets.

Rising threats to corporate identity and privacy

Individuals are no longer just the ones being preyed upon by identity thieves. Businesses can now be subject to corporate identity theft as well. You could wake up one day finding your business already accused of carrying out illegal activities, a big chunk of your money gone, and your directors? seats already occupied by complete strangers.

To make things worse, corporate threats aren’t just coming from the outside.

Threats to corporate privacy, for instance, can come from within the organisation itself. Sensitive information like trade secrets and financial data are often leaked out (purposely or inadvertently) by employees. This is largely caused by the ever growing number of options for communications and transferring data (e.g. emails, instant messaging, blogs, social networking sites, ftp, P2P, etc.).

Greater challenges in designing, developing, and implementing policies and programs

Laws and regulations like SOX and Solvency II, which have direct impacts on IT, are on the rise. That is why corporate policies and programs now require sweeping changes. You now have to be more deliberate in integrating IT when establishing governance, internal controls, change management, incident management, and performance management.

A solid understanding on widely accepted frameworks and good practices like COBIT, COSO, and CMMI will help you considerably in such undertakings. Using these frameworks as guidelines will not only help you keep your policies and programs attuned to the times, they will also keep you in compliance with regulations.

Increasing demand for disaster recovery and business continuity capabilities

Every time you have a down time, you increase the probability of losing your customers to competitors. The longer the down time, the greater that probability becomes. Therefore, when a major disruption strikes, you should be able to recover at the soonest. If possible, you should be able to deliver products and services as usual.

This of course requires spending to increase your disaster recovery (DR) and business continuity (BC) capabilities. Are you ready for it? Migrating your IT infrastructure from traditional systems to the latest technologies that are better equipped for BC/DR requires careful planning and implementation to ensure an optimal return on investment.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?